Functional significance of the TATA element major groove in transcription initiation by RNA polymerase II.

نویسندگان

  • D K Lee
  • K C Wang
  • R G Roeder
چکیده

The binding of TFIID to the TATA element initiates assembly of a preinitiation complex and thus represents one of the most important steps for transcriptional regulation. The fact that the TATA binding protein (TBP), a subunit of TFIID, exclusively contacts the minor groove of the TATA element led us to ask whether the major groove of the TATA element plays any role in transcription initiation or its regulation. Our results show that modifications of the major groove of the TATA element in the adenovirus major late promoter have no effect on TFIID binding affinity or on transcription in a cell-free system reconstituted with purified factors. However, major groove modifications do decrease the levels of both basal and activator-mediated transcription in unfractionated nuclear extracts, indicating that the intact structure of the major groove of the TATA element is functionally important for transcription initiation in a more physiological context.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structural basis of preinitiation complex assembly on human pol II promoters.

Transcription initiation requires the assembly of a preinitiation complex (PIC), which is nucleated through binding of the TATA-box binding protein (TBP) to the promoter. Biochemical studies have shown, however, that TBP recognizes the TATA-box in both orientations and, therefore, cannot account for the directionality of PIC assembly. Transcription factor IIB (TFIIB) is essential for transcript...

متن کامل

Each of three "TATA elements" specifies a subset of the transcription initiation sites at the CYC-1 promoter of Saccharomyces cerevisiae.

Transcription initiation of the yeast iso-1-cytochrome c gene (CYC-1) occurs in six major clusters at positions +1, +10, +16, +25, +34, and +43. Potential "TATA elements" lie upstream at positions -154, -106, -52, and -22. Analysis of the TATA region suggests that three of these TATA sequences are functional and contribute to initiation at CYC-1, with the -106 TATA promoting initiation at +1, +...

متن کامل

Accurate positioning of RNA polymerase II on a natural TATA-less promoter is independent of TATA-binding-protein-associated factors and initiator-binding proteins.

Two promoter elements, the TATA element and initiator (Inr), are capable of directing specific transcription initiation of protein-encoding genes by RNA polymerase II (RNAPII). Although binding to the TATA element by the TATA-binding protein (TBP) has been shown to be the initial recognition step in transcription complex formation in vitro, the mechanism through which the basal machinery assemb...

متن کامل

Functional binding of the "TATA" box binding component of transcription factor TFIID to the -30 region of TATA-less promoters.

Many viral and cellular promoters transcribed in higher eukaryotes by RNA polymerase II lack obvious A+T-rich sequences, called "TATA" boxes, that bind the transcription factor TFIID. One such TATA-less promoter, the simian virus 40 major late promoter, contains a genetically important sequence element 30 base pairs upstream of its transcription initiation site that has no obvious sequence simi...

متن کامل

Transcription factor TFIID induces DNA bending upon binding to the TATA element.

The TATA box-binding factor TFIID plays a primary role in the process of transcription initiation by RNA polymerase II and its regulation by various gene-specific factors. Here we employ a permuted binding site/gel retardation assay with recombinant yeast and human TFIID to show that this factor induces DNA bending around the TATA element. These results are consistent with the presence of G + C...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Nucleic acids research

دوره 25 21  شماره 

صفحات  -

تاریخ انتشار 1997